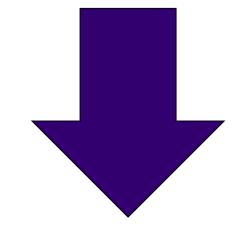


Aaron Abeyta¹, Jack Hardy², Marco Iacoviello², Aaron Maschhoff², Yuliya Pruzhanskaya² The Boeing Company ¹Department of Materials Science and Engineering, ²Department of Mechanical Engineering

INTRODUCTION


- Laser Powder Bed Fusion is a process that 3D printers, such as the EOS M290, utilize to print titanium parts
- The printer requires an inert gas flow in the build chamber to prevent oxidation and remove smoke and ejected condensate during the melting process
- The gas flow inside the build chamber has not been fully characterized

PURPOSE

The gas flow inside the EOS M290 printer must be characterized to analyze its effect on material properties throughout the build chamber

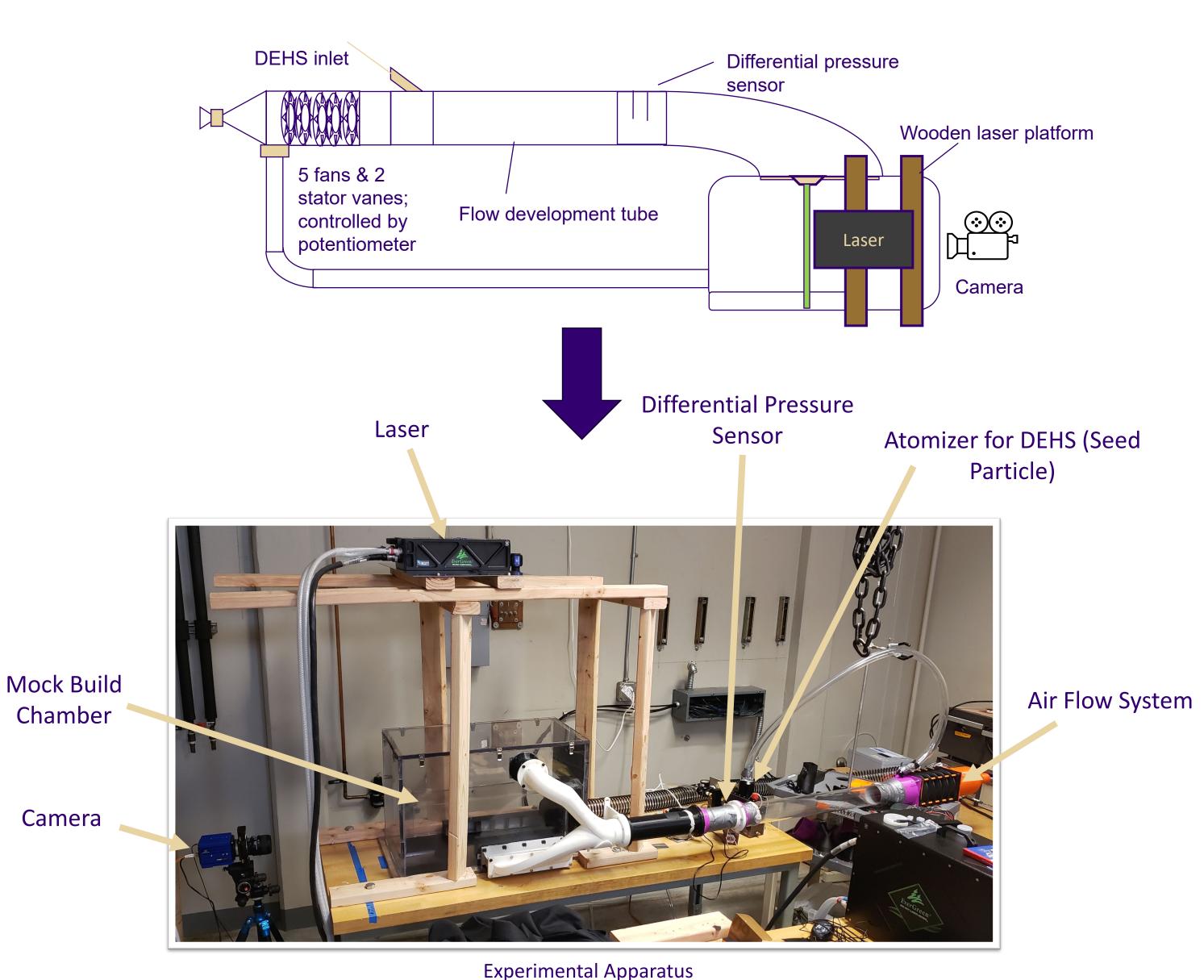
CORE FUNCTIONS

- Model the gas flow in the EOS M290 printer
- Accurately characterize the flow in the model chamber

Particle Image Velocimetry

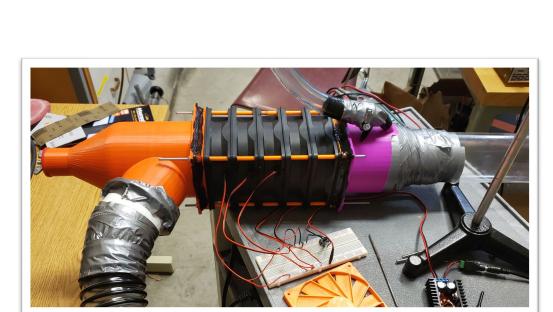
- Velocity field is constructed from pairs of images
- of tracer particles in the flow
- Particles illuminated by laser sheet

ADDITIVE MANUFACTURING GAS FLOW


DESIGN AND DEVELOPMENT

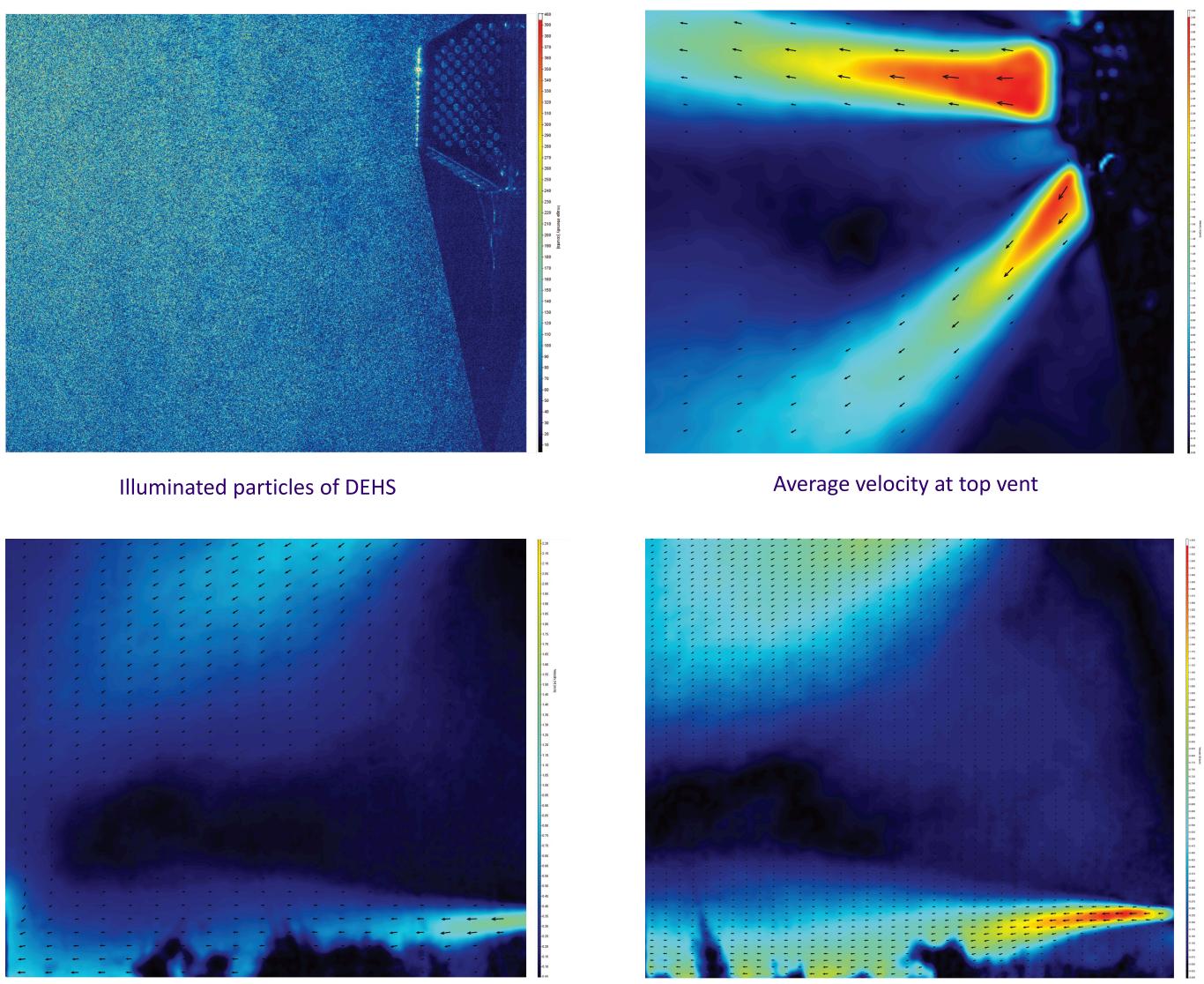
EOS M290 build chamber and mockup system

EXPERIMENTAL PARAMETERS


Boeing tests: 120 m³/h flow rate

PIV SYSTEM DETAILS

- Evergreen 200 mJ pulsed laser (532 nm wavelength)
- 5.5 Megapixel CMOS Camera
- Flow seeded with DEHS
- Controlled by Programmable Timing Unit (PTU) and DaVis software



CPU fan air flow system

Visualize flow at inlet vents and outlet baffle

RESULTS

							1		-	-		1	
· *.			-	-	-	-	-	-	-	1	1	1	
1	1		-	-	-	-	-	-	1	1	1	1	
1	*	-	-	-	-	-	1	-	1	1	1	1	
1	-	-	1	-	-	-	1	-	-	1	1	1	
1	1	-	1	-	-	1	1	1	1	1	1	1	
		1	-	-	1	1	1	1	1	1	1	1	
1		1	1	1	-	1	1	1	1	1	1	1	
		1	1	-	1	1	1	1	-	1	1	1	
1		1	1	1	1	1	1	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1		
1	1	1		1	1	-	1	1	1	1	1		
	1	1	1	1	1		- 1	1		1		- 14	
	1	1	1	1	1		1						
1	1	1											
1	1												
· ' .		-											
125													
;			-							_		-	
				-			_				_	_	
1			-	_				-		6 de	-	+	
	-			-	14	1/4		-	+		-	-	
-	-	-	-	-	-		-	-	-		-	-	
+	+	+	-	+				-					

Average velocity at outlet baffle

- trap unwanted vapor
- box

Acknowledgements

- The Boeing Company
- Special thanks to Professor Owen Williams

Mechanical Engineering Capstone Exposition

May 30th 2023, Husky Union Building, University of Washington, Seattle

Average velocity at bottom vent

• Multiple dead zones in the chamber • Turbulent flow in bottom vent • Flow rate drops from 7.2 m/s to 3 m/s at upper inlet

CONCLUSION & FUTURE WORK

• Nonuniform flow in chamber • Large dead zone in center of build chamber can • Improved upper inlet design should be investigated to more effectively move air across

• Stereoscopic PIV for 3D flow field

• Boeing engineers Patrick Buffington, Troy Haworth, Ashley Jones, and Julian Williams • Our advisors Professors Dwayne Arola and Ramulu Mamidala